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Abstract

Accurate forecasts of thunderstorms are important to space launch, aviation,

and public safety. While prior studies have primarily focused on atmospheric condi-

tions leading to lightning onset, less research has been dedicated to the challenging

problem of predicting lightning cessation. This study verifies the probabilistic light-

ning cessation model developed by Joseph Patton (2017) at Florida State University

for use by the U.S. Air Force’s 45th Weather Squadron at Cape Canaveral Air Force

Station (CCAFS) and the National Aeronautics and Space Administration (NASA)

Kennedy Space Center (KSC). The Washington, D.C. greater metropolitan area,

which presents a climate different to that of central Florida, was chosen as the do-

main of study. Consistent results would build confidence for use of the method at

CCAFS/KSC and lend credence for use at other locations and possible implementa-

tion as a product for the Next-Generation Radar network.

The lightning cessation algorithm employs the use of dual-polarization radar

and New Mexico Tech Lightning Mapping Array in and around the Washington, D.C

area. The algorithm incorporates the presence of graupel at -5◦C, -10◦C, -15◦C, and

-20◦C levels, maximum reflectivity at 0◦C, and composite (maximum) reflectivity in

a generalized linear model. The model was tested for three probability thresholds:

95.0%, 97.5%, and 99.0%. A database of 47 isolated, warm season storms in the

greater metropolitan Washington, D.C. area were tracked. Performance statistics

show that the model revealed notable skill in the Washington, D.C. area, yet not to

the desired level as indicated by the model’s performance in central Florida.
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I. Introduction

Over the past 30 years, lightning has ranked among the top five weather-related

phenomena to induce the most fatalities in the United States (National Weather

Service, 2017). As of 2016, the National Weather Service (NWS) reported a 30-

year (1987-2016) average of 47 lightning-related deaths per year. Many of these

fatalities are the result of the public’s misjudgment on the storm’s evolving capacity

to generate lightning. In fact, the most dangerous periods for lightning-induced injury

or fatality coincide with not just the first lightning flash, but also the last (Holle

et al., 1999). As a storm appears to be dissipating, the perceived lightning threat

diminishes. Often this occurs prematurely, leading to reduced safety precautions

before the lightning potential has fully dissipated. Miscalculations of the timing of

lightning cessation has resulted in avoidable casualties. In addition, industries with

time sensitive outdoor activities, such as flight line operations at commercial airports,

are interested in improved prediction of the timing of lightning cessation in order to

assure personnel can return to work as quickly as possible while still maintaining their

safety. Consequently, the necessity for further research and a better understanding

of the driving mechanisms of lightning cessation is evident.

A recent study by Patton (2017), hereafter referred to as JP17, investigated a

new probabilistic strategy for predicting lightning cessation. His model was designed

for use by the 45th Weather Squadron (45 WS) at Cape Canaveral Air Force Station

(CCAFS)/Kennedy Space Center (KSC). Florida leads the nation in lightning occur-

rence; it has one of the highest annual cloud-to-ground (CG) lightning density (flashes

km−2) in the nation as indicated by Figure 1 (Wolf, 2007). Consequently, there have

been more than double the number of lightning-induced fatalities in Florida than in

any other state from 2006 to 2015 (Holle, 2016).

The 45 WS utilizes lightning watches to forecast the potential for lightning with

1
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Figure 1. Annual CG lightning density (flashes km-2 ) across the contiguous United
States (Wolf, 2007).

a desired lead-time of 30 min. These alerts prompt resource protection measures to

ensure base safety and operational mission success. Once lightning is detected on

station or if lightning is imminent, a lightning warning is issued, notifying base per-

sonnel and halting operations. Indeed, the prevalence of lightning and its impact on

aviation and space launch operations drives the 45 WS’s demand for improved light-

ning guidance. Because there is not as much skillful guidance on how to forecast the

end of lightning, after-the-fact analysis has shown that the 45 WS lightning warnings

are left issued too long. This is costly due to lost productivity of outside workers,

which can delay preparation for space launch and eventually even the space launch

schedule.

The 45 WS issues lightning watches and warnings for ten mostly overlapping

lightning warning circles at CCAFS, KSC, Patrick AFB, and other locations as de-

picted in Figure 2 (Roeder et al., 2017). A lightning watch is issued when lightning

is expected in the circle(s) with a desired lead-time of 30 min. A lightning warning is

issued when lightning is imminent or occurring with the circle(s). The circles have a

2
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Figure 2. The ten lightning warning circles used by 45 WS for CCAFS, KSC, Patrick
AFB, and other locations (Roeder et al., 2017).

radius of 5 nm or 6 nm depending if a single small facility is being served, or if several

close facilities or a single large facility is being served, respectively. The 45 WS issues

the lightning watches and warnings based on total lightning (i.e. both CG lightning

and lightning aloft). The top meteorological challenge to the 45 WS has been know-

ing when to cancel lightning warnings. A set of complex rules, namely the Lightning

Launch Commit Criteria (LLCC), is employed by the 45 WS during space launches

to protect space launch vehicles and their payloads from natural and rocket-triggered

lightning (McNamara et al., 2010). However, these rules provide guidance primarily

for the protection against rocket-triggered lightning. Accordingly, the LLCC is more

stringent than the standard forecast rules for natural lightning, and the lightning

cessation research in this thesis does not apply.

The lightning cessation model developed by JP17 is the latest effort by the 45

WS to improve their rules for lightning cessation and culminates several years of re-

3
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search. A probabilistic framework for predicting lightning cessation has the potential

to improve timing precision of the last flash occurrence. This improvement would

allow lightning advisories to be canceled sooner and with more confidence. There-

fore, operations would be resumed quicker, maximizing time available for outside

operations the weeks to months of preparation before space launch.

Upon testing his lightning cessation algorithm in central Florida, JP17 observed

positive results. The median wait time expressed by the model was significantly

shorter than that of the 45 WS guidance (15-min wait time) currently used. A better

understanding of how this model performs can be achieved by testing this method in a

climate different to that of central Florida. This concept forms the basis of my study.

JP17’s lightning cessation model will be tested on a set of isolated thunderstorm cases

in and around Washington, D.C. Evaluating and comparing the results of this model

in the new environment will provide insight into the model’s versatility and efficacy.

Consistent results will lend credence to the model’s effectiveness and build confidence

in the 45 WS’s use of the method operationally. With significant positive results, these

findings could even contribute to an eventual implementation of a similar algorithm

in the Next-Generation Radar (NEXRAD) network.

This chapter introduced the purpose of this study, and provided the scope of the

problem at hand. Chapter II provides a review of the cloud electrification mechanisms

and previous research on lightning cessation. Additionally, it provides a background

of the instruments used, namely dual-polarization radar and the lightning mapping

array. Chapter III details the methodology and data used for analysis. Chapter IV

presents the results of the analysis. Lastly, Chapter V discusses the conclusions and

the significance of the research findings as well as offers a recommendation for future

work.

4
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II. Background

2.1 Cloud Electrification

Lightning can be classified into four main categories: CG, cloud-to-cloud (CC),

intra-cloud (IC), and cloud-to-air (CA). CG includes any lightning discharge between

cloud and earth. Within the CG category there are four main types: downward neg-

ative lightning, upward negative lightning, downward positive lightning, and upward

positive lightning. The polarity of the CG lightning is defined by the net transfer

of charge to the ground: a negative CG flash transfers a net negative electric charge

to the ground, and positive CG transfers a net positive charge to the ground. Each

of the CG types can be classified as CG discharges, in which the associated electri-

cal charge effectively reaches the surface. In this context, “effectively” refers to the

resulting flow of electrons within a lightning channel due to the movement of elec-

trons located elsewhere in the channel. In fact, a direct charge transfer from cloud

to ground does not actually occur (Rakov, 2016). In contrast to CG lightning, CC,

IC, and CA lightning take place in the air and are collectively referred to as cloud

flashes.

There are many possible charging mechanisms that lead up to lightning dis-

charge and flash initiation, both on the ground and in the atmosphere. The cloud

electrification process begins with the electrification of individual hydrometeors, fol-

lowed by the spatial separation of these charged hydrometeors due to polarity. A

simplified example schematic of the separation of charges for two distinct locations is

depicted in Figure 3.

The two primary electrification mechanism classifications are inductive and non-

inductive. Inductive electrification describes a charge separation process involving an

external electric field (Rakov, 2016; Saunders, 2008). In a non-inductive electrifica-

5
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Figure 3. Conceptual model of the charge distribution and tripole structure of an
isolated summer thunderstorm in Florida and New Mexico (adapted from Krehbiel
(1986)).

tion process, the hydrometeors are polarized internally within the cloud, and do not

require polarization by the ambient electric field (Rakov and Uman, 2003). Non-

inductive charging (NIC) theory describes a process involving interactions among

graupel, ice crystals, and supercooled water droplets (Takahashi, 1978). Both mech-

anisms play a significant and distinct role in the lightning electrification process. In-

ductive electrification enhances the electric field concentrations after the initial field

is established, while the NIC mechanisms generate the initial charge distribution and

polarity (Kuettner et al., 1981). Consequently, NIC drives the initial rapid devel-

opment of the electric field and is deemed the most widely accepted electrification

mechanism to date.

During the non-inductive electrification process, large scale separation of charged

particles occurs due to gravity (Rakov, 2016). Ice particles and supercooled water

droplets are also mobilized within the cloud. Following the schematic in Figure 4

, these particles collide with individual graupel particles and retain the charge of

the opposite species (Zhang et al., 1991). Typically, ice crystals develop a positive

6
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Figure 4. Conceptual schematic of the NIC (adapted from Saunders (2008)). Graupel
particles interact with ice crystals in the presence of supercooled water droplets within
the mixed-phase region. Collision of these particles prompts a sign change, contributing
to the charge distribution necessary for cloud electrification.

charge, while the graupel exhibits a negative charge. However, according to labora-

tory studies (Jayaratne et al., 1983), a critical cloud temperature exists that dictates

the charge of the graupel. Below the critical temperature, graupel particles acquire

a negative sign. Once this temperature is exceeded, lower altitude graupel particles

acquire a positive sign. This critical temperature is aptly referred to as the “reversal

temperature” and ranges from -10◦C to -20◦C at a height of 6 km (Rakov, 2016).

The presence of graupel at key levels is a major indicator of cloud electrification.

Graupel forms when supercooled water droplets, lofted from storm updrafts above the

0◦C level, collect and freeze on ice crystals or snowflakes. This interaction typically

occurs in the mixed-phase (MP) region of the storm. The MP region is defined as the

region between the 0◦C and approximately -40◦C isothermal levels where supercooled

water droplets, graupel, and ice crystals coexist Williams (1985).

As described by Williams (1989), thunderstorms typically exhibit a tripole
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charge. The layer between -10◦C and -25◦C, where graupel formation is most preva-

lent, is predominantly negatively charged and enveloped by a large positively charged

regions above and smaller positively charged region below the middle negative layer

(Figure 3). The top positively charged layer is dominated by ice crystals lofted above

by the updrafts within the cloud, and the lower positively charged layer is likely due

to the positively charged graupel at warmer temperatures below the reversal temper-

ature. According to NIC theory, this tripole structure is enhanced by the collisions of

ice crystals and graupel particles within the cloud. It is theorized that when enough

charge separation occurs, a preliminary breakdown is eventually able to take place

(although the exact mechanism of this process is still unknown) which results in the

initiation of the first stepped leader (Rakov, 2013). Therefore, the MP region plays a

key role in the lightning electrification and subsequently lightning cessation processes.

Negative polarity CG lightning originates from the negative region of the cloud

tripole structure and is prevalent in summertime thunderstorms (Krehbiel et al.,

1979). In fact, at least 90% of the global CG lightning is accounted for by nega-

tive downward lightning (Rakov, 2013). IC lightning primarily exists between the

upper positive and negative layers of the tripole and lightning aloft constitutes 75%

of all global lightning (Rakov, 2013).

2.2 Previous Studies

Timing lightning cessation has proven to be particularly challenging due to

its unpredictable nature and the lack of understanding with respect to the primary

mechanisms that influence it. Anderson (2010) aimed to discern whether an empiri-

cal relationship established by Wolf (2007) for CG lightning onset could likewise be

applied to lightning cessation: once the 40 dBZ horizontal reflectivity exceeds the

-10◦C level, CG lightning will occur. However, this hypothesis did not distinguish
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between the mechanisms of charge generation versus charge dissipation. Thus, this

criteria produced an insignificant correlation with the end of lightning occurrence.

Research motivated by the 45 WS over the past decade has utilized advanced

meteorological tools such as Lightning Detection and Ranging (LDAR) and dual-

polarization radar data to improve lightning cessation forecasts. A recent study driven

by the 45 WS to develop empirical guidance for lightning cessation employed LDAR

data, vertical sounding data, and select radar data from 116 storms (Stano et al.,

2010). Five statistical and empirical schemes for forecasting lightning cessation were

evaluated. Four of the five schemes failed by prompting the cancellation of the light-

ning warnings too early. The Percentile Method (PM) was the only scheme integrated

into 45 WS operational lightning forecasts. Unlike the other four methods, the PM

successfully captured the outlier maximum time intervals between strikes. However,

it is important to note that this scheme had a propensity to overforecast the wait

time after lightning cessation.

More recently, Preston and Fuelberg (2015) implemented the use of dual-polarization

radar data in an endeavor to improve lightning cessation prediction. Their results in-

dicated that the best lightning cessation forecasting algorithm identified the presence

of graupel and a radar reflectivity of greater than or equal to 35 dBZ at the -10◦C tem-

perature altitude. 10 min after this criteria is no longer satisfied, lightning cessation

is expected. The algorithm was an effective tool for forecasting lightning cessation

in isolated thunderstorms. Thereafter, Davey and Fuelberg (2017) investigated the

prediction of lightning cessation for specifically non-isolated cells employing the use

of dual-polarization radar products at specific isothermal levels within the MP region.

However, applying this method to non-isolated thunderstorms did not produce the

same measure of success. In their study, a “non-isolated” thunderstorm was defined

as a storm impacted by flashes originating from nearby cells. They concluded that
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no combination of dual-polarization or conventional radar products had produced

consistent results for safely predicting lightning cessation in non-isolated cells. As a

result, more research is required to provide empirical guidance applicable to multi-cell

and other non-isolated cell environments.

Founding the basis of my research, JP17 employed dual-polarization radar data

to forecast lightning cessation using probabilistic guidance. JP17 utilized several

techniques employed in the research by Preston and Fuelberg (2015) and Davey and

Fuelberg (2017). First, dual-polarization radar data at specific isothermal heights in

the MP region were extracted for input into his lightning cessation model. Specifically,

JP17 used the dual-polarization derived Hydrometeor Classification Algorithm (HCA)

product to determine graupel presence at the 0◦C, -5◦C, -10◦C, -15◦C, and -20◦C

levels. In addition, maximum reflectivity values at these key levels as well as the

maximum composite reflectivity value were utilized.

Next, the radar data was incorporated into two separate predictive models which

output a probability for lightning cessation. The idea was to designate probabilistic

weights for parameters of statistical significance using a generalized linear model

(GLM) to generate a best-fit logistic regression which delivered probabilistic guidance

for total lightning occurrence. JP17 tested an independent version and a bootstrapped

version of the GLM. While both methods proved to shorten the current 45 WS wait

times for forecasting lightning cessation, the bootstrapped version of the GLM was

the recommended method. JP17 found that the 97.5% probability threshold of the

bootstrapped GLM offered both time savings and a low false alarm ratio. This study

focuses on applying JP17’s probabilistic GLM on an entirely new climate in the

Washington, D.C. area. Its performance will be evaluated and compared to the

model’s results in central Florida.
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2.3 Dual-Polarization Radar

The use of polarized radar sensing in meteorological applications can be traced

back to the late 1940s associated with the detection of precipitation echoes (Doviak

and Zrnic, 2014). The radar beams were horizontally polarized to increase the return

signal scattered off hydrometeors. As rain drops fall, small drops remain spherical

since the surface tension of the drop dominates over the aerodynamic forces. In

contrast, for large drops the aerodynamic forces become stronger and the drops spread

horizontally, such that the horizontal extent of the drop is greater than the vertical

extent. Consequently, larger drops provide a greater intensity signal for a horizontally

polarized radar beam. This conventional radar technology evolved tremendously over

the following decades. When combined with the capabilities of the pulsed-Doppler

radar, this technology enabled enhanced meteorological sensing via the penetration

of clouds to detect tracers of wind and measure their radial velocities.

A collaborative effort by the National Severe Storms Laboratory (NSSL) and the

NWS under the National Oceanic and Atmospheric Administration (NOAA) resulted

in the most recent technological advancement of the traditional Doppler radar, the

dual-polarization radar. The recent invention of dual-polarization radar has proven

to be a useful meteorological forecasting tool in a variety of operational and research

settings through the detection of hydrometeors in the atmosphere. Its unique capa-

bilities set it apart from the conventional single-polarization Doppler radar developed

in the 1990s. Both conventional radar and dual-polarization radar utilize an active

sensing process in which short pulses of electromagnetic wave fields are initially trans-

mitted from the source. The transmitted wave propagates outward until it reaches

an object (e.g. rain, hail). The radar pulse scatters off the object and is received by

the radar. The signal is then processed through algorithms which decipher character-

istics regarding the sensed objects. The primary difference between the conventional
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Figure 5. Utilization of horizontal and vertical polarizations allow dual-polarization
radar to decipher the size and shape of hydrometeors (NSSL, 2017).

radar and dual-polarization radar is the orientation of polarization of the electromag-

netic wave. While conventional radar systems employ horizontally polarized waves,

dual-polarization radar employs both horizontally and vertically polarized waves as

depicted in Figure 5. This advanced feature enables information regarding both the

size and shape of the object to be recorded by the sensor (NSSL, 2017). Additionally,

by combining the various dual-polarized radar returns, the most likely hydrometeor

species can be identified.

The NWS operates 160 high-resolution 10-cm wavelength, S-band Doppler weather

radars, namely the NEXRAD Weather Surveillance Radar, 1988, Doppler (WSR-

88D). Beginning in 2011, WSR-88D NEXRAD sites across the nation upgraded to

new dual-polarization radar capabilities. These dual-polarization radars provide 14

new NWS derived products in addition to the basic reflectivity and velocity products

available through conventional radar systems. WSR-88D radars offer two primary

data processing levels: Level-II and Level-III. These processing levels differ in reso-
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lution, processing time, and products available. Level-II radar data has a resolution

of 250 m x 0.5◦ in azimuth below 2.4◦ in elevation, while Level-III radar data has a

resolution of 1 km x 1◦ in azimuth. Level-II base data consist of three meteorological

data quantities: reflectivity, mean radial velocity, and spectrum width. There are

over 75 Level-III products including both low-bandwidth base products in addition

to derived, post-processed products such as HCA, precipitation estimates, and hail

estimates.

The HCA can be used in conjunction with key temperature levels to infer possi-

ble cloud electrification. The algorithm categorizes each radar echo within the radar

beam into the most likely hydrometeor type. The HCA distinguishes between 10

types of radar echoes: hail, graupel, big drops, heavy rain, rain, wet snow, dry snow,

ice crystal, ground clutter, and biological. This classification process uses a fuzzy logic

scheme described by Ryzhkov et al. (2005) and Schuur et al. (2003). The algorithm

combines conventional base radar products as well as dual-polarization parameters

with melting layer data (Kumjian, 2013). There are six radar parameters directly

utilized in the algorithm: 1) horizontal radar reflectivity, 2) differential reflectivity,

3) cross-correlation coefficient, 4) specific differential phase, 5) a texture parameter

of the reflectivity field, and 6) a texture parameter of the field of differential phase

(Park et al., 2009). The identification of graupel presence within the MP region using

the HCA product is a key component to JP17’s lightning cessation model.

2.4 Lightning Mapping Array

Utilizing a network of stations to collectively establish a three-dimensional light-

ning display, the Lightning Mapping Array (LMA) locates the total lightning present,

both aloft and on the ground. The New Mexico Institute of Mining and Technology
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Figure 6. The DCLMA network comprised of 10 stations centered around the greater
metropolitan Washington, D.C. area. The network encompasses an area of 70 x 100
km in extent.

LMA system was developed by Bill Rison, Paul Krehbiel, Ron Thomas and colleagues.

The lightning detection network is patterned after the LDAR system developed for use

at the National Aeronautics and Space Administration (NASA) KSC (Maier et al.,

1995). The LMA network locates lightning discharges, including the small-scale, fast

components of a lightning flash such as stepped leaders, when dielectric breakdown

occurs. The LMA detects these lightning features by pinpointing sources of very high

frequency (VHF) radiation using a Global Positioning System (GPS)-based time of

arrival technique (Krehbiel et al., 2000; Rison et al., 1999). Pioneered by Proctor

(1971), the time of arrival (TOA) method employs the use of six or more stations.

Six or more stations are necessary to pinpoint the location of the lightning discharge in

three-dimensional space, to eliminate false solutions, and to provide location accuracy
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via statistical methods such as chi-square minimization (Thomas et al., 2004).

Arrival times of the VHF radiation in the 6 MHz bandwidth of an unused televi-

sion channel (centered at approximately 60 MHz) are recorded independently for each

of the stations. The TOA at a pair of stations are used to identify the time differences

of arrival which constrain the source of the VHF pulse to a hyperbolic surface. A

second pair of stations provides a second hyperbolic surface which intersects the first

surface providing a three-dimensional curved line on which the discharge occurred.

Three or more pairs of stations are necessary to identify the intersection of hyperbolic

surfaces which pinpoints the source of the lightning discharge in three-dimensional

space as shown in Figure 7 (Roeder, 2010). By connecting stepped leader locations

in space and time from the originating flash, the lightning channels can be identified.

For each station, the peak radiation event is recorded in intervals of 80 to 100

microseconds when a predetermined radio frequency (RF) power noise threshold is

exceeded (Rison et al., 1999). The LMA processing is done in approximately 1-

second segments, whereby all the TOA values are placed into a single array that is

sorted chronologically. The three-dimensional capabilities of the LMA system enable

mapping of lightning channels with 95.0% flash detection efficiency and 76.9% source

detection efficiency within a 100-km radius of all networks (Chmielewski and Bruning,

2016).

There are three established New Mexico Tech LMA networks across the nation

in Oklahoma, Alabama, and Washington, D.C. The LMA network located in the

Washington, D.C. greater metropolitan area, and used in this study, was developed in

a collaborative effort between NASA, NOAA, and New Mexico Tech. The Washington

D.C. Lightning Mapping Array (DCLMA) is comprised of 10 stations that span an

area of 70 x 100 km in extent (Figure 6). Multiple stations are utilized to prevent

the misidentification of noise spikes as sources of radiation at individual locations.

15



www.manaraa.com

Figure 7. Stepped leader location via differences in time of arrival between pairs of sta-
tions (Roeder, 2010). In general, pinpointing the location of a stepped leader requires
four intersecting hyperbolae. (a) Two-dimensional view of intersecting hyperbolae
(left) and (b) three-dimensional view of intersecting hyperbolae (right)

The network maps total lightning activity over a 200-300 km diameter area around

Washington, D.C.
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III. Methodology

3.1 Sources of Meteorological Data

A final database of 47 thunderstorm cases were collected from the DCLMA

archives for the Washington, D.C area. In order to most accurately test the lightning

cessation model developed by JP17, the corresponding meteorological data sources

and radar dataset characteristics were emulated as closely as possible. The thunder-

storm cases were taken from warm season months (May to September) over a 6-yr

span (2012 to 2017). Each storm was manually tracked using dual-polarization radar

beginning 16 min prior to lightning cessation to 16 min following lightning cessation,

for a total tracking timespan of 33 min. These time restrictions were chosen to em-

phasize the target time limits required to outperform the standard 15-min wait time

presently used by the 45 WS.

3.1.1 Lightning Data

The New Mexico Tech DCLMA network located in Washington, D.C. was used

to collect archived lightning flash data for each of the thunderstorm cases. The

LMA network functions similarly to the Second Generation Lightning Detection and

Ranging (LDAR-II) network (Poehler and Lennon, 1979; Roeder, 2010) located at

KSC and used in JP17’s study. Patterned after the LDAR-II system, the New Mexico

Tech LMA pinpoints the location of VHF radiation to identify lightning channels in

three dimensional space. This allows both IC flash channels and CG upper channels

to be captured in addition to CG strikes. The LMA network measures the time of

arrival of 60 MHz RF radiation from a lightning discharge and the data is displayed

approximately once per second. Hourly post-processed data were used to identify

lightning flashes. The time of lightning cessation was determined to be the minute
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that the last flash was detected by the LMA network. The lightning flashes associated

with each isolated storm were tracked using MATLAB code to pinpoint the last flash

corresponding with the time of lightning cessation.

3.1.2 Radar Data

Four dual-polarization WSR-88D radars from the NWS in and around the Wash-

ington, D.C area were used to extract Level-II and Level-III radar data for each thun-

derstorm case. The primary radar used for the majority of the cases and within the

closest proximity to the Washington, D.C. greater metropolitan area is located in

Sterling, VA (KLWX).

A complicating factor with the Level-III data collection process was the lack

of radar data for key dual polarization parameters above the 3.5◦ elevation angle.

Specifically, the HCA values at higher elevation angles corresponding to the isothermal

levels ranging from -10◦C to -20◦C could not be collected using KLWX as the sole

radar source. Thus, three alternate radars displayed in Figure 8 were used to combat

the dearth in radar data. The WSR-88D radar located at Dover AFB, DE (KDOX)

was the second closest radar to the Washington, D.C. area at a distance of 144 km

from the LMA network center. KDOX was used to collect the majority of the HCA

values at higher altitudes. The remaining two alternate radars located at College

State, PA (KCCX) and Norfolk/Richmond, VA (KAKQ) were used to collect HCA

values at higher altitudes for storms located on the northern and southern fringe of

the domain of study, respectively. Additionally, the use of multiple radars mitigated

the impact of the “cone of silence”, the inverted cone over the radar site where data

is unavailable due to close proximity to the radar. These additional radars worked

effectively to fill in gaps in data.

Raw Level-II and Level-III radar data downloaded from National Centers for
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Figure 8. Locations of the four WSR-88D dual-polarization radars used in this study.
The yellow stars denote the locations of KLWX, KDOX, KAKQ, and KCCX radars
using the GR2Analyst interface.

Environmental Information (NCEI) was ingested and tracked manually via GRLevelX

software. Specifically, GR2Analyst and GRLevel3 radar processing and display pro-

grams were used to analyze Level-II and Level-III radar data, respectively. GRLevelX

was developed by Gibson Ridge Software, LLC, and features a high-speed visual in-

terface for radar data displayed on a high resolution radial grid (1km x 1◦ x 230 km

with 256 data levels).

The radar data was manually tracked at scanning intervals between 3 to 5

minutes, depending on the current Volume Coverage Pattern (VCP). At each in-

terval, specific radar parameters were collected at five isothermal levels: 0◦C, -5◦C,

-10◦C, -15◦C, and -20◦C. These temperature levels were determined using Sterling,

VA (KIAD) 00 Coordinated Universal Time (UTC) analyzed atmospheric sounding
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Temperature level Thermal layer (ft)

0◦C 13,000-14,000
-5◦C 14,000-18,000
-10◦C 18,000-21,000
-15◦C 21,000-23,000
-20◦C 23,000-26,000

Table 1. Thermal layers calculated for each temperature level used for analysis.

text data from the University of Wyoming’s Atmospheric Science Department. The

height corresponding to each isothermal level was recorded for each of the 47 cases.

Since the height variation for each level was minimal (a maximum height variation of

2 kft), values for each isothermal height were averaged for all 47 cases. Furthermore,

isothermal heights were converted to isothermal layers for ease of manual analysis

(Table 1). Finding the exact isothermal height for the parameters was indeed a chal-

lenge with manual analysis, especially with HCA due to limited elevation angles and

only plan view capabilities. JP17 also noted vulnerabilities in the model regarding

the large vertical gaps between isothermal temperature levels where key data could

be overlooked. Thus, using layers instead of singular temperature levels provided a

more comprehensive analysis that was also more operationally friendly.

3.2 Convective Cell Selection

An initial database of 135 thunderstorm cases from 2012-17 was collected from

the LMA archives for the Washington, D.C. area. These thunderstorm cases were

further refined by using an event ranking system that established limiting criteria.

Seven limiting criteria were selected for case elimination: cells with non-isolated,

severe, or linear convective characteristics, cells exceeding the “effective distance”

from the radar and LMA network, and poor health of the radar and LMA network.

The flow chart given by Figure 9 illustrates the stringent case selection process.

Each thunderstorm cell was scrutinized for key convective features using the
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Figure 9. Flow chart outlining the thunderstorm case selection process.

Interactive Radar Map Tool provided by the NCEI under NOAA. Firstly, non-isolated

cells were eliminated. Using guidance from Preston and Fuelberg (2015) and JP17,

an isolated thunderstorm was defined as having no connecting reflectivity channels

greater than 15 dBZ with surrounding cells (see Figure 15 for an observed example).

This limitation led to the elimination of over half of the initial 135 cases. For a

thunderstorm at the end of its life cycle, it is more common to find a non-isolated

thunderstorm cell than an isolated thunderstorm cell. This is due to the increased

number of thunderstorms in a given area and, consequently, increased number of

thunderstorm cell interactions. Cells were also analyzed visually for linear and severe

characteristics. Thunderstorm cells were verified severe if the Storm Prediction Center

(SPC) listed any archived severe storm reports associated with the thunderstorm in

question. These severe and non-linear thunderstorm cells were eliminated.

Secondly, range limits for cell selection were established from the center of both

the LMA network and KLWX radar. According to Chmielewski and Bruning (2016),
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Figure 10. Thunderstorm locations for all 47 cases at the time of lightning cessation
depicted by lightning icons. The outermost yellow range ring denotes the 110-km
KLWX radar radius and the white range ring denotes the 100-km LMA radius.

within 100 km of the LMA network the flash detection efficiency exceeded 95.0%.

Outside this range, the LMA lightning detection capabilities begin to deteriorate.

Therefore, only centrally located thunderstorm cells within a 100-km radius from the

DCLMA network were considered.

In addition, an effective radar range of 110 km from the primary KLWX radar

was established. The Interactive Radar Map Tool provided three separate radar

ranges based on the availability of beam coverage at specified altitudes from the

ground: 4,000 ft (best coverage), 6,000 ft (better coverage), and 10,000 ft (fair cover-

age). These radar height designations were determined by NOAA’s Radar Operations

Center. The 6,000 ft coverage, corresponding to an approximate 110-km radar range,

provided a large enough area to accrue the desired number of thunderstorm cases,

while still maintaining adequate resolution. Since the maximum range for KLWX

was 230 km, 110 km was deemed an acceptable range for KLWX. It is important to

note that this radar range was not maintained for all radars, but only the primary
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Figure 11. Hourly (top) and monthly (bottom) breakdown of all 47 thunderstorm cases.

radar KLWX. In fact, higher altitudes were desired for the alternate radars in order

to identify HCA presence at the higher isothermal levels (-10◦C to -20◦C). Thus, the

resolution was more coarse for these radars, and specifically the Level-III data.

Lastly, sufficient data and adequate data quality were key considerations during

the case elimination process. Thunderstorm cases needed to have sufficient LMA data,

meaning no noticeable gaps in hourly post-processed data, and at least six active LMA

stations. Thunderstorm cases that didn’t have any associated hourly post-processed

data available were eliminated. With respect to radar data, cases with gaps in KLWX

radar data due to radar outages were eliminated. For HCA data collection at higher

altitudes, if sufficient data were not available through KDOX, KCCX, or KAKQ

radars then the case was also eliminated.

The spatial distribution of the final 47 cases is depicted in Figure 10. There

was a higher concentration of lightning cessation cases on the eastern half of the

domain of study, since many cells to the west were avoided due to the impact of the
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mountainous terrain on radar quality. The monthly and yearly breakdown of storms

are presented in Figure 11. The majority of the lightning cessation cases occurred

near the time of peak heating, or shortly thereafter. Monthly coverage was relatively

evenly distributed amongst all months apart from July, which fostered the greatest

number of storms.

3.3 Patton’s Bootstrapped GLM

Popularized by McCullagh and Nelder (1989), GLM refers to a broad classifica-

tion of models in which the response variable follows an exponential family distribu-

tion with the mean. The mean is assumed to be some, typically nonlinear, function

of xici, where xi comprises the known covariates and ci comprises the coefficients to

be estimated. Similarly, the bootstrapped GLM developed by JP17 utilizes a set of

predictor and coefficient values in a best-fit logistic regression model for predicting

lightning cessation.

The GLM was trained by extracting a 40% random sample of the 1-min in-

terval observations from the total dataset. The 1-min observations were classified

by their timing with respect to lightning cessation: before lightning cessation and

after lightning cessation. The GLM was trained to associate future lightning with the

radar-derived parameters consistent with the observations taken prior to lightning

cessation. Additionally, the model was trained to associate no lightning with the

radar parameters indicated by observations which occurred after lightning cessation.

A predictive model was then calculated using the most statistically significant predic-

tors. This process was repeated 1,000 times to pinpoint a median estimate of predictor

coefficients. This use of sampling with replacement reveals the “bootstrapped” aspect

of JP17’s GLM.

For the observations taken prior to lightning cessation, graupel presence at one
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or more isothermal levels as well as higher radar reflectivities are expected. Likewise,

lack of graupel presence and lower radar reflectivities indicate observations after light-

ning cessation. The GLM incorporates these radar-derived parameters using a linear

combination and then calculates the associated predictor coefficients that best reduce

errors. This process is performed by using a least squares method for maximum like-

lihood estimation. The model is a form of binary logistic regression which utilizes a

binomial distribution to estimate error distributions for the GLM. The “link” func-

tion, described in Agresti (2013), relates the coefficients and predictor values, listed

in Table 3 and Table 2 respectively, to the lightning cessation probability given by

Equation 1. Accordingly, radar parameters of statistical significance were assigned

probabilistic weights, utilized to estimate the probability for lightning cessation:

Probability(Cessation) =
exp(c0 + c1x1 + c2x2 + c3x3 + ...)

1 + exp(c0 + c1x1 + c2x2 + c3x3 + ...)
(1)

Following Equation 1, x1, x2, x3,... represent radar-derived parameters deemed sta-

tistically significant by the GLM. The coefficients calculated by the GLM c1, c2, c3,...

are multiplied by these observed parameters.

Level Parameter (xi)

Composite (Maximum) Maximum reflectivity
0◦C Maximum reflectivity
-5◦C Graupel presence (0 or 1)
-10◦C Graupel presence (0 or 1)
-15◦C Graupel presence (0 or 1)
-20◦C Graupel presence (0 or 1)

Table 2. Predictor values to be incorporated into JP17’s bootstrapped GLM.
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Parameter (xi) Coefficient Value (ci)

Maximum composite reflectivity -0.2472
Maximum reflectivity at 0◦C -0.0637

Graupel presence (0 or 1) at -5◦C -1.1189
Graupel presence (0 or 1) at -10◦C -0.8548
Graupel presence (0 or 1) at -15◦C -0.8072
Graupel presence (0 or 1) at -20◦C -0.9997

Intercept (c0) 16.0826

Table 3. The six predictor coefficient values to be incorporated into JP17’s boot-
strapped GLM.

3.4 Lightning Cessation Algorithm Testing

Once a refined set of lightning cessation cases was collected, the time of lightning

cessation, or the minute of the last recorded lightning flash, was determined for each of

the 47 cases. To ensure lightning flashes detected via the LMA network corresponded

to the appropriate thunderstorm cell, hourly LMA images were used as a first glance

comparison tool. Figure 12 depicts a cluster of lightning flashes corresponding to an

isolated cell. The lightning flash cluster location was then compared visually with

radar reflectivity images to ensure the cluster aligned with the cell of interest.

Thereafter, hourly post-processed LMA data for each of the thunderstorms were

ingested into MATLAB analysis software. The code utilized a set of predetermined

latitude and longitude constrictions and time restraints based on the analyzed LMA

images and radar reflectivity trends. Within these constrictions, the precise time and

location of the last lightning flash was determined.

Each of the 47 lightning cessation cases were analyzed using the lightning cessa-

tion predictive model developed by JP17. JP17’s recommended method for lightning

cessation utilizes a bootstrapped GLM that incorporates six predictor values (Table

2) and their corresponding coefficient values (Table 3). Predictor values at a specific

time are input into the GLM equation which generates the probability for lightning
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Figure 12. Cluster of lightning flashes circled in red that corresponds to a lightning
cessation thunderstorm case. This is an hourly real-time 250 km image for June 9,
2014 at 2300 UTC.

cessation at that time. For this study, thunderstorm cells were analyzed from 16

min before the time of lightning cessation to 16 min following the time of lightning

cessation, spanning a total of 33 min. Radar parameters were collected for each radar

scan within the alloted time and grouped into 4-min bins. Tracking and analysis of

radar data was done manually via GRLevelX software. Although manual analysis

introduces the possibility of human error, storms were triple checked to ensure accu-

racy. Additionally, multiple radars were employed to ensure consistency and to fill in

brief time gaps in radar data.

First, Level-III radar data were collected. GRLevel3 software was employed

to analyze HCA and composite reflectivity values using a plan position indicator

27



www.manaraa.com

Figure 13. KLWX radar image taken at 2206 UTC, prior to lightning cessation. Com-
posite reflectivity (left) and HCA (right) at the 3.5◦elevation angle displayed using
GrLevel3 2-panel view.

Figure 14. To facilitate the graupel identification process, the HCA color table was
customized accordingly.

(PPI) display. GRLevel3 offers a multi-panel viewing platform that was utilized for

analyzing Level-III data quickly and efficiently. Figure 13 displays an example case

in which composite reflectivity and HCA at the 3.5◦ elevation angle were displayed

at the first 4-min binned group, 16 min prior to lightning cessation. In this case,

the maximum composite reflectivity for the storm was 57.5 dBZ. Next, HCA values

were analyzed at each available elevation angle. The required elevation angles were

determined based on the estimated thermal layers listed in Table 1. The elevation

angle displayed on the panel to the right hand side of Figure 13 corresponds to the

-5◦C layer. Graupel presence is represented by the bright red color. Since the HCA
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Figure 15. KDOX radar image taken at 2206 UTC, prior to lightning cessation. HCA
values displayed using GrLevel3 4-panel view, each panel showing a different elevation
angle: 0.9◦(top left), 1.5◦(top right), 1.8◦(bottom left), 2.5◦(bottom right).

color pallet in GRLevel3 encompasses 12 classes of hydrometeors, the HCA color table

was customized according to Figure 14 to facilitate the graupel identification process.

According to Figure 13, graupel presence was identified at the -5◦C level. However,

three remaining thermal layers must still be analyzed for graupel presence (-10◦C,

-15◦C and -20◦C). Since the elevation angles for HCA do not typically encompass the

isothermal heights beyond -10◦C with the archived Level-III KLWX radar data, an

additional radar had to be employed to collect the remaining HCA data. In this case,

KDOX was used. Figure 15 shows the remaining three elevation angles required for

analysis (and the -5◦C layer for double-checking purposes) using the KDOX radar.

After Level-III radar data were acquired, Level-II maximum reflectivity values

at 0◦C were collected. GR2Analyst software was used to visualize the data, and

the cross-section feature was implemented to analyze the data. Figure 16 shows the

layout of the cross-section feature with height and horizontal distance displayed on

the vertical and horizontal axes, respectively. Toggle buttons in the right panel under
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Figure 16. Example GR2Analyst radar cross-section of reflectivity of a thunderstorm
cell.

“position” and “swing” were utilized as tools to scan through each thunderstorm cell

and pinpoint the maximum reflectivity value at the 0◦C level.

Following analysis, 4-min binned data were interpolated to 1-min intervals by

adopting a cubic Hermite spline interpolation method. This method utilizes a piece-

wise, continuous function comprised of 3rd order polynomials. Due to it’s piecewise

construct, cubic spline interpolation prevents Runge’s phenomenon, a manifestation

of artificial oscillations in the function due to higher order polynomial interpolation.

The interpolated value at a query point is based on a shape-preserving piecewise

cubic interpolation of the values at neighboring grid points. Therefore, cubic spline

interpolation allows for a smoother curve that is a better representation of what is

observed in nature, while still maintaining its true shape. The cubic spline interpola-
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Figure 17. The probability of lightning cessation over time for an example thunderstorm
case after cubic spline interpolation was applied.

tion was achieved using a MATLAB interpolation function, namely Piecewise Cubic

Hermite Interpolating Polynomial (PCHIP) (The Mathworks Inc., 2018). Figure 17

depicts the lightning cessation probability curve for an example thunderstorm case

after spline interpolation.

3.5 Bootstrapping the Data

The resulting dataset was comprised of 47 cases, each with 33 independent 1-

min observations; each observation corresponded to a percentage value indicating the

likelihood of lightning cessation. In order to establish confidence intervals for the

calculated performance statistics to effectively compare to JP17’s statistics, the data

were bootstrapped. Bootstrapping is a method of resampling introduced by Efron

(1979) which enables one to calculate the distribution of a given statistic using a

single original dataset. The resampling is performed by drawing n observations with

replacement from the original dataset, which is then used to calculate the statistic
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(Efron and Tibshirani, 1994; Hesterberg, 2015). This process is repeated many times,

typically 10,000 times to create a sufficient sample size. These bootstrap statistics

comprise the bootstrap distribution. This distribution can be utilized as an esti-

mate to infer the characteristics of the original statistic, including sampling error,

confidence intervals, and bias.

In this study, bootstrapping was performed on the lightning cessation proba-

bilities determined for the 33 1-min interval data for all 47 cases. Specifically, this

dataset was sampled with replacement 10,000 times, with corresponding performance

statistics calculated for each sample. Next, the percentile method (Efron and Tibshi-

rani, 1994) was applied to determine confidence regions for the calculated statistics.

The percentile method was deemed an acceptable method for calculating confidence

intervals for this study considering that the sample size after bootstrapping was suf-

ficiently large (10,000 samples) (Wilks, 2011). The 95th percentile of the calculated

statistics were determined, and the associated error bars were plotted with the statis-

tics from the original dataset. These values were overlaid with JP17’s central Florida

statistics for comparison.

3.6 Forecast Metrics

The interpolated 1-min interval data from the 47 cases were used to calcu-

late forecast metrics using a set of skill score statistics. The performance results

were calculated using two approaches. First, each 1-min interval was treated as an

independent observation, which corresponded to a probability value for lightning ces-

sation. Second, each thunderstorm case was treated as a singular event for which the

model was trying to correctly predict lightning cessation. Probability thresholds were

set to indicate that above these threshold values, the model predicted lightning cessa-

tion. Below these probability thresholds, lightning was predicted to still be ongoing.
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Three threshold probabilities were selected to match that of JP17: 95.0%, 97.5%, and

99.0%. These thresholds allow the model to be tested, and the performance metrics

to be determined. Furthermore, these particularly high probability thresholds were

selected to emphasize safety as a crucial priority when predicting lightning cessation.

For the first approach, every minute observation was categorized as either a hit,

miss, false alarm, or correct null in accordance with Table 4. A false alarm corresponds

to the prediction of lightning cessation when lightning is still ongoing. This is the

most dangerous case in terms of safety. A hit refers to an observation/minute which

indicates lightning cessation is correctly predicted. In contrast, a miss refers to the

event in which lightning cessation is not forecast, but lightning has ended. Finally,

the correct null refers to an observation that indicates lightning is ongoing, and the

model correctly forbears the prediction of lightning cessation.

For the second approach, each storm was considered an individual event for

which the model was attempting to correctly predict lightning cessation. The time

that the model first predicted lightning cessation for each case was recorded. This

represents the time a lightning advisory would be canceled if used real-time. A

total of 47 lag-times after lightning cessation were determined, and the median lag-

time was calculated. A storm with a lag-time after observed lightning cessation

Table 4. Contingency table from JP17 that lists the four possible outcomes based on the
connection between the model forecast and the observation ((Jolliffe and Stephenson,
2012; Wilks, 2011).
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between 1 and 15 minutes was designated as a hit. A storm with a lag-time after

observed lightning cessation beyond 15 minutes was designated as a miss. Lastly,

a false alarm was characterized as a storm for which the model predicted lightning

cessation prematurely. The correct null does not exist for this approach since all

storms eventually experience lightning cessation. Thus, only verification statistics

that do not incorporate the correct null were calculated for this approach.

Once the forecast metrics for the data were determined, a set of verification

measures defined by Equations 2-7 were calculated. These measures were used to

determine the skill of the model. Skill in this context refers to the ability of the

model to correctly forecast the occurrence or non-occurrence of lightning cessation,

more often than what would be expected by chance (Jolliffe and Stephenson, 2012).

The Probability of Detection (POD), or hit rate, refers to the proportion of lightning

cessation events that were correctly forecasted (Donaldson et al., 1975; Jolliffe and

Stephenson, 2012) and is defined as:

Probability of Detection = POD =
Hits

Hits + Misses
(2)

With regards to the POD, a value close to 1.0 is desired and conveys that there

were minimal missed forecasts in relation to hit forecasts. This means the model is

correctly detecting and predicting lightning cessation. It is important to note that

the POD does not take into account the false alarms and should therefore not be used

as the sole method for determining the skill of a forecast.

The False Alarm Ratio (FAR) refers to the probability of a false alarm given

that an event was forecast (Donaldson et al., 1975; Jolliffe and Stephenson, 2012). In

terms of lightning cessation, the FAR corresponds to the probability of forecasting
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lightning cessation when lightning is still ongoing. The FAR is defined as:

False Alarm Ratio = FAR =
False Alarms

Hits + False Alarms
(3)

FAR values range from 0.0 to 1.0. The ideal FAR is 0.0, signifying that the number

of false alarms is limited. Similar to the POD, the FAR should not be used alone to

measure the skill of a forecast due to the strong dependence on the number of hits.

In this case, rare events will score higher than random forecasts of common events,

and thus is deemed inequitable. In this study an equitable measure is one that gives

all random forecasting systems the same score (Gandin and Murphy, 1992). This

provides a no-skill baseline against which a forecaster can be examined in contrast to

have skill. While the use of FAR alone is inequitable, using FAR and POD conjointly

can provide a more accurate measure of the skill of the model; a perfect skill score

would have a FAR of 0.0 and a POD of 1.0.

The Critical Success Index (CSI) provides a sample estimate of the probability of

a hit occurring given that an event is either forecasted, observed, or both (Donaldson

et al., 1975; Jolliffe and Stephenson, 2012). CSI is defined as:

Critical Success Index = CSI =
Hits

Hits + Misses + False Alarms
(4)

Values range from 0.0 to 1.0 and a 1.0 CSI would indicate perfect skill, while a 0.0

would indicate no skill. Owing to the fact that this measure does not depend on the

number of correct rejections, it presents an inequitable skill assessment. Rare events

appear favored, since a non-occurrence of a rare event is easier to forecast, while com-

mon events are at a disadvantage. CSI will still be calculated, since JP17 calculated

this measure, and the goal is to compare all statistics of the model’s performance in

Washington, D.C. to those of central Florida. However, the measure will be weighted
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less than the following two, preferred verification measures: Heidke Skill Score (HSS)

and True Skill Statistic (TSS).

HSS and TSS are verification measures that provide useful stand-alone perfor-

mance statistics of the dataset. The HSS is a measure of the fractional improvement

of the forecast over the standard forecast, chance (Jolliffe and Stephenson, 2012;

Murphy and Daan, 1985). This measure utilizes a performance variable, namely the

Expected Correct (EXPCOR), that incorporates all possible forecast metrics as well

as the total number of events. EXPCOR is defined as:

Expected Correct = EXPCOR

=
(Hits + Misses) ∗ (Hits + False Alarms)

Total Events

+
(Correct Nulls + Misses) ∗ (Correct Nulls + False Alarms)

Total Events

(5)

EXPCOR represents the number of forecasts expected to verify based on chance. HSS

is defined as:

Heidke Skill Score = HSS =
(Hits + Correct Nulls)− EXPCOR

Total Events− EXPCOR
(6)

The sum of hits and correct nulls in the numerator represents the number of times

that the forecast matches the actual observation. HSS values range from −∞ to 1.0;

a perfect forecast would obtain a score of 1.0. Alternatively, random forecasts would

be awarded a score of 0.0 and negative values indicate that the random forecast is

better.

The TSS, also known as the Peirce Skill Score, is a verification measure that

takes all event outcomes outlined in Table 4 into consideration (Flueck, 1987; Jolliffe

and Stephenson, 2012; Murphy and Daan, 1985; Peirce, 1884). The TSS is defined
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as:

True Skill Statistic = TSS =
(Hits ∗ Correct Nulls)− (False Alarms ∗Misses)

(Hits + Misses) ∗ (False Alarms + Correct Nulls)

(7)

TSS values range from -1.0 to 1.0 with a desired value of 1.0. A value of 1.0 indicates

perfect skill, while a value of 0.0 indicates no skill. A value of -1.0 indicates perfect

skill, but incorrect calibration. For rare events, the number of correct nulls is large

and TSS is weighted accordingly. Thus, this score may be more useful for more

frequent events. Nevertheless, both TSS and HSS are considered truly equitable, and

will output an expected score of zero for both random and constant forecasts. As

equitable, stand-alone measures these statistics are the most valuable. Thus, they

will be emphasized in the following chapter.
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IV. Results

Overview

A database consisting of all the minutes from the 47 thunderstorm cases were

compiled. Two approaches were used to evaluate the performance results of JP17’s

bootstrapped GLM in the Washington, D.C. area. For the first approach, all 1,551

minutes of data were ingested, a forecast outcome was determined for each min-

ute/observation, and then the corresponding performance statistics for all the min-

utes were calculated. The second approach managed the data on a storm by storm

basis, whereby the model was trying to successfully predict lightning cessation for

each case. For this approach, a forecast outcome was determined for each case, and

then the corresponding performance statistics for all cases were calculated. For each

approach, the model’s performance results in the Washington, D.C. area were exam-

ined first, then these results were compared to JP17’s model performance results in

central Florida.

4.1 Minute by Minute Performance Results

A final dataset of 1,551 min was compiled, consisting of all the minute data from

each of the 47 cases from the 16 min before lightning cessation through the 16 min

following lightning cessation. Each minute/observation corresponds to a probability

value for lightning cessation. Results test how the method performed by treating each

1-min interval as an independent observation. Similar to JP17, the 95.0%, 97.5%, and

99.0% probability thresholds were tested.

Hits, misses, false alarms, and correct nulls were determined in accordance with

Table 4. It is important to note that with respect to lightning cessation these terms

should not be interpreted in the same manner as traditional forecast metrics. This
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Hits False Alarms Misses Correct Nulls

95.0% 247 6 505 793
97.5% 186 2 566 797
99.0% 126 1 626 798

Table 5. Minute by minute forecast verification metrics for the four possible outcomes
using JP17’s lightning cessation GLM in Washington, D.C.

is primarily due to the nature of the forecast; the goal is to correctly predict the

end of a weather phenomenon, not its onset. This point is best demonstrated by the

definition of a false alarm in terms of lightning cessation. A false alarm represents

the prediction of lightning cessation when lightning is still ongoing. Indeed, this is

the most dangerous outcome in terms of safety.

The forecast metrics for the Washington, D.C. area are listed in Table 5. By

examining the distribution of the metrics, the greatest weight for all three probabil-

ity thresholds was in the correct nulls. In Washington, D.C., the GLM performed

well correctly delaying the prediction of lightning cessation before the event actu-

ally occurred. This also contributed to the low number of false alarms; the false

alarms only comprise .40%, .13%, and .06% of the total metrics for the 95.0%, 97.5%,

and 99.0% thresholds, respectively. This is encouraging since false alarms pose the

greatest threat to public safety and resource protection.

The second most prevalent metric was miss. If the model did not forecast

lightning cessation, yet lightning cessation had indeed occurred, it was recorded as

a miss. Although this is not a dangerous result, it is not desired since it impedes

operations by imposing unnecessary and costly delays. Furthermore, the number of

misses is relatively high in relation to the number of hits. There are roughly twice

as many misses than hits. Simply looking at the ratio of misses to hits gives the

impression that the model forecasted lightning cessation incorrectly more often than

correctly. However, the large number of correct nulls, which is a favorable forecast
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outcome, should also be accounted for. Additionally, in the context of how this study

was executed, the misses to hits ratio can be misleading.

During analysis, a time constraint was applied which limited the observation

time to 33 min. This means that observations were not necessarily taken until the

storm dissipated and lightning cessation was guaranteed. In consequence, the dis-

proportion of misses to hits could be due to the fact that the model was not tested

long enough for all the possible number of hits to be identified. This disproportion of

metrics will also be self-evident in a few of the performance statistics for Washington,

D.C.

Once the forecast metrics for the data were determined, statistical performance

measures defined by Equations 2-7 and presented in Table 6 were calculated. These

measures were used to determine the skill of the GLM in the Washington, D.C. area.

The low FAR is congruent with the low number of false alarms in the dataset. The

FARs for each of the three probability thresholds fall below 2.5%. A lower value

is ideal since it indicates that a very small number of observations using the GLM

forecasted lightning cessation too early. As discussed in section 3.6, the FAR and

POD are best interpreted together. The POD values range from ∼ .10 to ∼ .30

(Table 6); these values are rather low since the desired POD score is a value near

1.0. Analyzing the POD and FAR conjointly gives conflicting results in terms of

model performance. While the model correctly refrains from prematurely forecasting

lightning cessation, it is also slow to identify lightning cessation when it is occurring.

DC Statistics POD FAR HSS TSS CSI

95.0% 0.3285 0.0237 0.6422 0.3209 0.3259
97.5% 0.2473 0.0106 0.6109 0.2448 0.2467
99.0% 0.1676 0.0079 0.5790 0.1663 0.1673

Table 6. Minute by minute performance statistics for the Washington, D.C. area using
JP17’s lightning cessation GLM.
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Thus, the number of hits in relation to misses is low.

The TSS and CSI reflect values similar to the POD, which has an approximate

range from ∼ .10 to ∼ .30 (Table 6). A perfect score for both TSS and CSI would be

1.0. Thus, the calculated TSS and CSI values indicate that the model has relatively

low skill. In contrast, the HSS indicates satisfactory performance with values ranging

from ∼ 0.55 to ∼ .65. As mentioned in section 3.6, the HSS combines all forecast

metrics in Table 5 to measure the fractional improvement of the forecast over the

standard forecast. Thus, these HSS values mean that the model is performing much

better than the standard forecast, or chance. However, it is important to note that

these performance results do not necessarily imply that the model will perform in the

same manner in real-time.

Next, the verification measures of the model’s performance in the Washington,

D.C. area were compared to the model’s performance in central Florida. Table 7

displays the performance measures calculated in JP17 for central Florida. Figures

18 through 19 illustrate the similarities and differences in the GLM’s performance

statistics in the Washington, D.C. area versus central Florida. The error bars for

each performance measure were calculated by bootstrapping the data using 10,000

resamples over a 95% confidence interval. These error bars reveal the variability,

or range of values, of each performance statistic for the Washington, D.C. dataset.

JP17’s results for central Florida are overlaid, showing the relationship of the per-

formance statistics for the two locations. If the performance statistics for central

FL Statistics POD FAR HSS TSS CSI

95.0% 0.6989 0.0044 0.6650 0.6949 0.6968
97.5% 0.6318 0.0013 0.5976 0.6307 0.6312
99.0% 0.5451 0.0005 0.5098 0.5448 0.5448

Table 7. Minute by minute performance statistics from JP17 for central Florida using
the lightning cessation GLM.
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Figure 18. POD, FAR, and HSS performance statistics for JP17’s GLM in both Wash-
ington, D.C. and central Florida. Washington, D.C. performance statistics and boot-
strapped results utilizing the 95th percentile are depicted by the diamonds and error
bars, respectively. Central Florida performance statistics are overlaid in circles.

Florida are contained within the Washington, D.C. error bars for the corresponding

performance statistic, then it can be concluded with confidence that the performance

statistics are statistically similar. Likewise, if the performance statistics for central

Florida are not contained within the Washington, D.C. error bars then it can be

concluded that the performance statistics are statistically different.

Figure 18 illustrates the comparison of POD, FAR, and HSS values for the

three probability thresholds. The FARs, which are a measure of the reliability of the

model, are relatively low for both locations and all probability thresholds. The central

Florida FARs are contained within the Washington, D.C. FAR error bar ranges, thus

they are statistically similar. In contrast, the POD values for both locations vary

significantly. In fact, the Florida POD values double those of Washington, D.C. This

contrast can possibly be construed by a key difference in methodologies. Theoretically,

there should be a minimum of one hit for each probability threshold for each case (at
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Figure 19. (a) TSS (left) and (b) CSI (right) performance statistics for JP17’s GLM in
Washington, D.C. and central Florida. Washington, D.C. performance statistics and
bootstrapped results using the 95th percentile are depicted by the diamonds and error
bars, respectively. Central Florida performance statistics are overlaid in blue circles.

least 47 hits per probability threshold). This is true because, for all lightning events,

lightning cessation will eventually take place. However, in this study, time restrictions

were set, limiting the analysis observation time to 33 min, 16 min before and after

lightning cessation. JP17 did not utilize time restrictions in his study. He observed

each thunderstorm case until the storm dissipated (or composite reflectivity dropped

below 25 dBZ) and the model forecasted lightning cessation. His higher values for

POD (Figure 18), TSS (Figure 19a), and CSI (Figure 19b) reflect this. This difference

in methodology will be accounted for in section 4.2 with the alternative performance

evaluation approach.

As discussed in section 3.6, the HSS and TSS are both truly equitable mea-

sures; therefore, they are more robust indicators of skill than CSI, POD, and FAR

used as stand-alone measures. One distinction between the TSS and HSS is that for

models with positive skill, TSS has a proclivity to treat overpredicting models more

generously than HSS, and underpredicting models more harshly. In this study, this

distinction is evidenced by the significant contrast between the TSS and HSS (Tables

6 and 7). Indeed, the model in the Washington, D.C. area tends to underpredict
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lightning cessation as indicated by the disproportionate ratio between misses and hits

in Table 5. This could explain why the HSS values are higher and more congruent

with JP17’s Florida results, while the TSS values are much lower in comparison.

4.2 Storm by Storm Performance Results

Similar to JP17’s performance evaluation strategy, a second method was utilized

to evaluate the model’s performance in the Washington, D.C. area by treating each

storm as an individual event. For this approach, the model was trying to correctly

predict the time of lightning cessation for each case. The objective was to treat each

thunderstorm case as if it were occurring in real-time. This approach identified the

time when the model first exceeded the designated probability value and predicted

lightning cessation, if at all.

Figure 20 presents a conceptual timeline of a thunderstorm case from storm

initiation to storm dissipation. Viewing from left to right, the 0 minute highlighted

by the first red line represents the time of observed lightning cessation. The second red

dashed line indicates the pre-established 45 WS wait time after lightning cessation.

This timeline helps to demonstrate the designation of possible forecast outcomes for

each thunderstorm case, since they differ from that of the first approach (see section

3.6).

Each thunderstorm case was defined by a single forecast outcome: hit, miss, or

false alarm. Hits, misses, and false alarms were all calculated based on strict time

limits with respect to the observed time of lightning cessation. The objective was to

correctly predict cessation within 1 to 15 min after lightning cessation occurrence.

This method tested the model’s performance against the 45 WS’s presently used wait

time of 15 min. The correct null does not exist for this approach since lightning

cessation is observed for every case. Thus, there is no situation that yields a case
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Figure 20. Timeline depicting the conceptual 60-minute lifetime of an isolated thunder-
storm from lightning onset to storm dissipation (adapted from JP17). The solid red line
at 0 minutes corresponds to the observed time of lightning cessation. The 16-minute
markers prior to and following lightning cessation correspond to the time limits set for
data analysis in this study. The green and blue arrows represent the three probability
thresholds from Patton’s bootstrapped GLM for Washington D.C. and central Florida,
respectively. Similarly, the minutes in red and black blocks represent the median time
relative to lightning cessation for Washington D.C. and central Florida, respectively.

outcome which correctly predicts the non-occurrence of lightning cessation. The

Washington, D.C. metrics and performance measures for this approach are listed in

Table 8 and Table 9, respectively.

By setting the 15-min time constraint for hit and miss designations, the storm

by storm approach accounted for the discrepancy of POD and CSI values noted

Hits False Alarms Misses

95.0% 25 3 19
97.5% 24 2 21
99.0% 17 1 24

Table 8. Storm by storm metrics for the three possible outcomes using JP17’s GLM
in Washington, D.C.
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DC Statistics POD FAR CSI

95.0% 0.5682 0.1071 0.5319
97.5% 0.5333 0.0769 0.5106
99.0% 0.4146 0.0556 0.4048

Table 9. Storm by storm performance statistics for the Washington, D.C. area using
JP17’s lightning cessation GLM.

in section 4.1. The Washington, D.C. performance statistics presented in Table 9

are significantly higher than those determined using the first evaluation approach

(Table 6). In fact, POD and CSI values are almost double the performance statistics

calculated by using the first approach. For this approach, the applied time constraint

has no impact on the forecast metrics. Thus, the difference in CSI and POD values

can be attributed in part to this characteristic.

With regard to the FAR (Table 9), the values are significantly higher than the

FARs listed in Table 6 using the first approach. The FARs for the three probability

thresholds range from ∼ 5.0% to ∼ 11.0% for the Washington, D.C. area. Although

there is only a small percentage of total minutes in the dataset that are associated

with false alarms, these minutes are distributed among several storms that performed

worse as a whole. This has serious implications with respect to real-time use; even

predicting lightning cessation a minute early can have dangerous safety repercussions.

Table 10 lists JP17’s performance statistics for central Florida for comparison

with the corresponding statistics for the Washington, D.C. area. Although there is an

approximate .25 difference between the POD values for the 95.0% probability thresh-

old for central Florida versus Washington, D.C., the values become more consistent

FL Statistics POD FAR CSI

95.0% 0.8022 0.0135 0.7935
97.5% 0.7033 0.0154 0.6957
99.0% 0.5519 0.0098 0.5489

Table 10. Storm by storm performance statistics for JP17 in central Florida using the
lightning cessation GLM.
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with increasing probability thresholds (Table 9 and 10). There is a more significant

drop-off of POD values from the 95.0% probability threshold to the 99.0% probability

threshold for central Florida compared to Washington, D.C. Meanwhile, the FARs

for central Florida remain relatively consistent for all three probability thresholds,

while there is a significant drop-off in FAR from the 95.0% threshold to the 99.0%

thresholds in Washington, D.C. Therefore, for these performance measures the Wash-

ington, D.C. results corresponding to the more conservative probability thresholds,

97.5% and 99.0%, are more consistent with those of central Florida. This observation

is evidenced by Figure 21; both POD values and FAR values are closer to the 95%

confidence interval for the 97.5% and 99.0% probability thresholds compared to the

95.0% threshold.

According to Figure 21, the FARs for central Florida do fall within the 95%

confidence interval calculated for the Washington, D.C. area. However, the POD

values do not fall within the Washington, D.C. 95% confidence interval. Thus, the

FAR values are statistically similar, while the POD values are statistically different.

Similar to the results from first approach, these are conflicting outcomes, which expose

the model discrepancies in the Washington, D.C. area. Furthermore, it should be

noted that the calculated error bars are much longer for this approach due to smaller

sample size (47 outcomes versus 1,551 for the first method). These longer error bars

indicate lower reliability.

Lastly, the model-predicted lag-time after lightning cessation was determined for

the three probability thresholds for each of the 47 cases. These lag-times are depicted

in Figure 22. The horizontal red line represents the time that lightning cessation was

observed, and the horizontal dashed black line represents the presently used 45 WS

wait time. It is important to note that the thunderstorm cases for which the model

did not predict lightning cessation within the 33-min observation timespan are not
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Figure 21. Storm by storm POD and FAR performance statistics for JP17’s GLM in
Washington, D.C. and central Florida. Washington, D.C. POD and FAR bootstrapped
results utilizing the 95th percentile are depicted by the diamonds and error bars, re-
spectively. Corresponding performance statistics for Central Florida are overlaid in
circles.

displayed here. Thus, there are no results displayed above the 16 min mark. However,

this does not skew the results. The objective was to test the model’s performance with

the desired result to have the model-predicted lightning cessation time fall between

the 0 and 15-min timespan. Indeed, most of the predicted lightning cessation times

exist between these two limits, with few events situated on or below the red line. The

95.0% probability threshold exhibits the most false alarms, yet these false alarms

occurred just minutes shy of the observed time of lightning cessation.

The median lag-times were calculated to compare to the median lag-times de-

termined in JP17’s study for central Florida. Furthermore, 10,000 resamples of the

dataset were achieved to determine the 95th percentile range of values. The boot-

strapped results are illustrated by the error bars in Figure 23 and overlaid with JP17’s
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Figure 22. Storm by storm lag-times for thunderstorm cases in Washington, D.C.
Results for all three probability thresholds of JP17’s GLM are displayed. Markers
beneath the solid red line indicate false alarms, and markers above the dashed black
line indicate that the model waited too long to predict lightning cessation (beyond
the 45 WS wait time of 15 min). The total 47 cases are not displayed because the
observation time was constrained to 16 min before and after lightning cessation.

median values for central Florida. The median lag-times for Washington, D.C. are 12,

15, and 16 min for the 95.0%, 97.5%, and 99.0% probability thresholds, respectively.

The cases for which the model did not predict lightning cessation within the 33-min

observation window were still factored into the median lag-time calculation. These

lag-time values were designated as an arbitrary number greater than 16 min. Overall,

the resulting median lag-times for the lightning cessation model in the Washington,

D.C. area are longer than the median lag-times in central Florida for all three prob-

ability thresholds. The error bars indicate that there is also significant variability

in the median times based on the small sample size. Furthermore, both the 97.5%

and 99.0% thresholds surpass the currently established 45 WS wait time. Only the

95.0% threshold outperforms the 15-min wait time, with a median lag-time of 12 min.
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Figure 23. The median lag-time results for JP17’s GLM in Washington, D.C. and
central Florida. Washington, D.C. bootstrapped lag-times utilizing the 95th percentile
are depicted by the green error bars. Central Florida median lag-times are overlaid in
blue circles.

However, the increased FAR associated with the 95.0% probability threshold must

also be taken into consideration.
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V. Conclusions

5.1 Summary of Results

Probabilistic lightning cessation guidance using a bootstrapped GLM was re-

cently developed by JP17 for the 45 WS’s use at CCAFS/KSC. To test the model’s

overall consistency and versatility in other geographical locations, the GLM was tested

in and around the greater metropolitan Washington, D.C. area. Similar to JP17’s

study, a three-dimensional lightning mapping system and dual-polarization radars

were employed to test the model. A dataset of 47 isolated thunderstorms was col-

lected following a similar selection process to that of JP17’s study.

The bootstrapped GLM utilizes six key dual-polarization radar predictor values:

graupel presence at the -5◦C, -10◦C, -15◦C, and -20◦C isothermal levels, maximum

reflectivity at the 0◦C level, and maximum composite reflectivity. These predictor

values give insight into the mechanisms that sustain lightning generation and the

physical properties indicative of lightning cessation. The model was tested by em-

ploying JP17’s GLM for each thunderstorm case. The results were evaluated using

a set of performance measures identical to that of JP17. Two approaches were used

to verify the model’s performance. The first approach considered every minute as

an individual event with a singular outcome, while the second approach considered

each storm as an individual event with a singular outcome. Median lag-times after

lightning cessation were also determined for each probability threshold to compare

with those calculated by JP17.

Comparison of the performance statistics for the GLM in the Washington, D.C.

area and central Florida reveals that overall JP17’s GLM did not perform as well

in the Washington, D.C. area as it did in central Florida. The TSS values for all

three probability thresholds for the Washington, D.C. area were approximately half
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those of central Florida. Additionally, for both verification approaches, POD and CSI

values for all probability thresholds were significantly lower for the Washington, D.C.

area. Bootstrapped results established a 95th percentile range of values depicting the

performance statistics’ variability. Results show that POD, TSS, and CSI values were

not contained within these value ranges, confirming the model discrepancies in the

two geographically separated areas (Figures 18, 19, and 21).

Nevertheless, there are a few promising results that can be extracted from this

study. The consistency between the HSS values in Washington, D.C. and central

Florida (Tables 6 and 7) indicates that the model does convey skill, and is more

accurate than the standard forecast. Furthermore, the low FARs indicated by the

model’s performance in Washington, D.C. reveal that the model tends to evade the

most dangerous outcome by waiting until lightning ceases before predicting lightning

cessation. The 95th percentile ranges from the bootstrapping validated these model

consistencies for the FARs for both approaches and HSS (Figure 18).

These findings indicate that key radar parameters utilized by the model were

statistically significant for predicting lightning cessation for both locations. Specifi-

cally, graupel presence within the MP region plays a vital role in the lightning electri-

fication processes according to NIC theory. Also, the use of isothermal temperatures

levels as opposed to height levels are excellent coordinates for identifying radar pa-

rameters, since they have consistent properties regardless of geographical location.

This corroborates the results of JP17 and Preston and Fuelberg (2015) which identi-

fied graupel presence at specific isothermal level(s) as statistically significant. During

analysis, graupel presence was almost always observed throughout the MP region

during active lightning. Likewise, there was a noticeable trend in the rapid reduc-

tion of graupel presence promptly after observed lightning cessation. This decline in

graupel presence started at the upper levels, and percolated to the lower levels with
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the successive minutes after cessation. This pattern complemented JP17’s lightning

cessation model well. However, the model still tended to delay the forecast of light-

ning cessation for too long. This can be attributed to the reflectivity trends of the

Washington, D.C. storms. The storm reflectivity values tended to be too high for too

long, causing the model to unnecessarily delay the prediction of lightning cessation.

Median lag-times after cessation were also evaluated for the Washington, D.C.

area. The analyzed median lag-times for the three probability thresholds in the

Washington, D.C. area were longer than the lag-times in central Florida. The 95.0%

threshold was the most promising result, with a 12-minute lag-time after cessation

compared to the 9-minute lag-time for central Florida. Though this result is signif-

icant, the FAR for the 95.0% threshold must also be considered, since it displayed

the highest FAR of all the probability thresholds: 2.4% and 10.7% using the first and

second approach, respectively. However, the more conservative probability thresh-

olds, 97.5% and 99.0%, convey no significant wait time improvement from the 45 WS

presently used 15-minute wait time. Yet, these more conservative thresholds could

provide some utility for the 45 WS by giving the forecaster greater confidence that

the lightning has truly ceased.

Although the performance results for JP17’s bootstrapped GLM were highly

favorable for central Florida, the results for the Washington, D.C. area did not pro-

duce the same level of success. Discrepancies in the model’s performance can likely be

attributed to key climate differences for the two domains of study as well as method-

ology incongruities. With regard to climate, the difference in forcing mechanisms and

the disproportionate concentration of aerosols in the environment convey key climate

distinctions for the two locations. According to the 2010 Census (United States Cen-

sus Bureau, 2010), Washington D.C. had a population density of 9,856 people per

square mile and ranked among the top ten most populous metropolitan statistical
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areas (Mackun and Wilson, 2011). This contrast in population density compared

to central Florida suggests that there is a higher degree of anthropogenic aerosol

emissions in Washington, D.C. compared to central Florida. This exposes the Wash-

ington, D.C. atmosphere to a different atmospheric particle composition capable of

interacting differently with hydrometeors within the MP region. Consequently, more

aerosol concentrations in the atmosphere could serve as cloud condensation nuclei for

more ice crystal formation. This consequence could ultimately alter the electrifica-

tion mechanisms within the cloud and even the frequency of lightning occurrence.

However, these are currently conjectures that need to be analyzed and tested further

for legitimacy.

Furthermore, the difference in forcing mechanisms prevalent in the Washing-

ton, D.C. area compared to those prevalent in central Florida has significant impacts

on lightning generation and cessation. Although both locations are situated along

the coast, the latitudinal differences create different atmospheric environments for

storm development. While central Florida is characterized as a more barotropic en-

vironment, the Washington, D.C. environment exhibits more baroclinic tendencies.

Furthermore, Washington, D.C. is under predominantly continental air with west-

erly flow while central Florida is predominantly under maritime air with easterly and

westerly flow. This key difference exposes Washington, D.C. to more frontal systems

than central Florida. Subsequently, central Florida is exposed to more airmass thun-

derstorms due to sea breezes originating from both east and west coastlines. Selecting

solely warm season thunderstorms aimed to avoid the baroclinic systems prevalent in

spring and fall which typically foster more linear, multicellular, and severe thunder-

storms.

Nevertheless, trying to select a sufficient amount of thunderstorm cases that met

the criteria discussed in section 3.2, yet were not influenced by baroclinic forcings,
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was virtually impossible. In fact, collecting the 47 isolated thunderstorm cases near

Washington, D.C. over a 6-year timespan was an arduous task. The majority of the

observed storms were omitted due to linear or severe characteristics associated with

frontal passage. Thus, the frequency of occurrence of isolated thunderstorms was

much less frequent in Washington, D.C. than its southern counterpart. If identifying

isolated storms was so difficult to achieve in the Washington, D.C. area, then JP17’s

lightning cessation model, which depends on isolated cell structure, is definitely not

an ideal cessation model for that area. Perhaps lightning cessation guidance can-

not be captured by a single comprehensive model, but rather relies on key climate

distinctions.

Lastly, although this study endeavored to replicate JP17’s methodology as pre-

cisely as possible, there were a few inevitable differences which could have contributed

to performance inconsistencies. One of the most significant differences was the man-

ner in which the radar analysis was performed. JP17 automated the process using

Warning Decision Support System - Integrated Information (WDSS-II) software (Lak-

shmanan et al., 2007). However, in this thesis, the analysis and model testing was done

manually in the Washington, D.C. area. This resulted in the use of layers instead

of precise isothermal levels, vertical gaps in HCA data between available elevation

angles, and decreased HCA resolution for the higher isothermal levels. Furthermore,

JP17 tested the model using a robust database of 184 Florida thunderstorms, while

this study consisted of only 47 Washington, D.C. thunderstorms. Nonetheless, error

bar calculations for the performance statistics using the bootstrapping technique did

account for these sample size differences.
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5.2 Future Work

Future work is required to corroborate the aforementioned conclusions and clar-

ify the discrepancies in the performance of JP17’s lightning cessation predictive model

in the Washington, D.C. area. This includes repeating the process by applying sev-

eral adjustments to the methodology, increasing the number of thunderstorm cases

by analyzing thunderstorms from other geographical locations, and testing different

dual-polarization parameters.

Adjustments to the methodology to more closely mimic JP17’s methods could

help clarify the discrepancies in model performance. The primary adjustment would

be to automate the analysis process by using WDSS-II or a similar program to ingest

and analyze radar data. This would permit the automated merging of local WSR-

88D radars and interpolation of essential radar parameters in three-dimensional space

and time. Additionally, it would provide the highest resolution for all radar-derived

parameters and avoid the opportunity for human error. Another adjustment to the

methodology would be to analyze the storms until they fully dissipated (or the com-

posite reflectivity dropped below 25 dBZ) rather than limiting analysis to 16 minutes

before and after lightning cessation. This would help verify the performance statistics

from the first verification approach.

The results of this study suggest that some aspects of the JP17 method may

be applicable to climates different from central Florida. In addition to increasing

the sample size in the Washington, D.C. area, the method should be tested in cli-

mates even more different from central Florida. Specifically, areas near an active

dual-polarization radar and LMA network: Alabama and Oklahoma. The LMA in

Alabama is more similar to the climate in central Florida, especially in summer, while

the LMA in Oklahoma could provide a test in an entirely different climate. Moreover,

LMAs supporting field research could provide spot checks in additional areas with
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different climates.

Lastly, a similar probabilistic approach utilizing different dual-polarization pa-

rameters could be tested for the Washington, D.C. area. It was proven that although

JP17’s bootstrapped GLM did not perform as well in the Washington, D.C. area as

it did in central Florida, the model did show promising skill. Graupel presence in the

MP region was a key indicator of active lightning, while the reflectivity value thresh-

old for lightning cessation in the model was too low. Perhaps a different combination

of dual-polarization radar parameters or tweaking threshold values at select isother-

mal levels within the MP region would produce more optimal performance results.

Ideally, this revised GLM would incorporate some of the same radar parameters used

in JP17 in addition to other statistically significant dual-polarization parameters.

In conclusion, although JP17’s bootstrapped GLM did not achieve the same

level of success in the Washington D.C. area as it did in central Florida, the re-

sults were still significant. Performance statistics show that the model did achieve

skill and the 95.0% probability thresholds did shorten the wait time by 3 minutes,

while still achieving favorable HSS values. Additionally, the storm by storm verifi-

cation approach revealed that while the model performed worse in the Washington

D.C. area compared to central Florida, some of the performance statistics were still

comparable and thus reassuring. Recommendation for action would be to retain the

probabilistic guidance concept from JP17 and develop and test various GLMs with a

new combination of radar parameters extracted from the MP region. Ideally, thunder-

storms from select locations across the nation would be incorporated into the storm

database. This could possibly achieve a more comprehensive lightning cessation pre-

dictive model that would deliver optimal lightning cessation guidance for locations

with differing climates.

57



www.manaraa.com

Bibliography

Agresti, A. (2013). Introduction to Generalized Linear Models. In Categorical Data

Analysis, pages 113–162. John Wiley & Sons, 3rd edition.

Anderson, H. A. (2010). Characteristics of decaying storms during lightning cessation

at kennedy space center and Cape Canaveral Air Force station, MS Thesis. Florida

State University.

Chmielewski, V. C. and Bruning, E. C. (2016). Lightning Mapping Array flash de-

tection performance with variable receiver thresholds. J. Geophys. Res. Atmos.,

121(14):8600–8614.

Davey, M. J. and Fuelberg, H. E. (2017). Using radar-derived parameters to forecast

lightning cessation for nonisolated storms. J. Geophys. Res. Atmos., 122:3435–3456.

Donaldson, R., Dryer, R., and Kraus, M. (1975). An objective evaluator of techniques

for predicting severe weather events. In Ninth Conference on Severe Local Storms,

pages 321–326, Norman, OK. Amer. Meteor. Soc.

Doviak, R. J. and Zrnic, D. (2014). Doppler Radar and Weather Observations. Aca-

demic press.

Efron, B. (1979). Bootstrap methods: Another look at the jacknife. Ann. Stat.,

7:1–26.

Efron, B. and Tibshirani, R. J. (1994). An Introduction to the Bootstrap. CRC Press,

Boca Raton, FL.

Flueck, J. (1987). A study of some measures of forecast verification. In Conference on

Probability and Statistics in Atmospheric Science, pages 69–73, Edmonton, Canada.

Amer. Meteor. Soc.

58



www.manaraa.com

Gandin, L. and Murphy, A. (1992). Equitable scores for categorical forecasts. Mon.

Weather Rev., 120:361–370.

Hesterberg, T. C. (2015). What teachers should know about the bootstrap: Resam-

pling in the undergraduate statistics curriculum. Am. Stat., 64(4):371–386.

Holle, R. L. (2016). Lightning Fatalities by State. Technical report, Vaisala Inc.,

Tuscon, AZ.

Holle, R. L., Lopez, R. E., and Zimmermann, C. (1999). Updated recommendations

for lightning safety-1998. Bull. Amer. Meteor. Soc., 80(10):2035–2041.

Jayaratne, E. R., Saunders, C. P. R., and Hallett, J. (1983). Laboratory studies

of the charging of soft-hail during ice crystal interactions. Q.J.R. Meteorol. Soc.,

109:609–630.

Jolliffe, I. T. and Stephenson, D. B. (2012). Deterministic forecasts of binary events.

In Forecast Verification: A Practitioner’s Guide in Atmospheric Science, chapter 3,

pages 31–59. John Wiley & Sons, Chichester, England, 2d edition.

Krehbiel, P., Thomas, R., Rison, W., Hamlin, T., Harlin, J., and Davis, M. (2000).

GPS-based mapping system reveals lightning inside storms. Earth and Space Sci.

News, 81(3):21–25.

Krehbiel, P. R. (1986). The electrical structure of thunderstorms. In The Earth’s

Electrical Environment, chapter 8, pages 90–113. The National Acadamy Press,

Washington DC.

Krehbiel, P. R., Brook, M., and McCrory, A. (1979). An analysis of the charge

structure of lightning discharges to ground. J. Geophys. Res., 84(C5):2432–2456.

59



www.manaraa.com

Kuettner, J. P., Levin, Z., and Sartor, J. D. (1981). Thunderstorm electrification-

inductive or non-inductive? J. Atmos. Sci., 38(11).

Kumjian, M. R. (2013). Principles and applications of dual-polarization weather

radar. Part I: Description of the polarimetric radar variables. J. Operational Me-

teor., 1(19):226–242.

Lakshmanan, V., Smith, T., Stumpf, G., and Hondl, K. (2007). The Warning Decision

Support SystemIntegrated Information. Wea. Forecasting, 22(3):596–612.

Mackun, P. and Wilson, S. (2011). Population distribution and change: 2000 to 2010.

Technical report.

Maier, L., Lennon, C., Britt, T., and Schaefer, S. (1995). LDAR system performance

and analysis. In Proceedings of the International Conference on Cloud Physics.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Chapman &

Hall, 2d edition.

McNamara, T. M., Roeder, W. P., and Merceret, F. J. (2010). The 2009 update to

the lightning launch commit criteria. In 14th Conference on Aviation, Range, and

Aerospace Meteorology, Atlanta, GA. Amer. Meteor. Soc.

Murphy, A. and Daan, H. (1985). Forecast verification. In Murphy, A. and Katz, R.,

editors, Probability, Statistics and Decision Making in the Atmospheric Sciences,

pages 379–437. Westview Press, Boulder, CO.

National Weather Service (2017). Weather Fatalities 2016.

NSSL (2017). Research Tools: Dual Polarized Radar.

60



www.manaraa.com

Park, H., Ryzhkov, A., Zrnic, D., and Kim, K. (2009). The hydrometeor classification

algorithm for the polarimetric WSR-88D: Description and application to an MCS.

Wea. Forecasting, 24:730–748.

Patton, J. (2017). Using radar-derived parameters to develop probabilistic guidance

for lightning cessation within isolated convection near Cape Canaveral, Florida, MS

Thesis. Florida State University.

Peirce, C. S. (1884). The numerical measure of the success of predictions. Science,

4(93):453–454.

Poehler, H. A. and Lennon, C. L. (1979). Lightning Detection and Ranging (LDAR)

system description and performance objectives. Technical report, NASA, Cocoa

Beach, FL.

Preston, A. D. and Fuelberg, H. E. (2015). Improving lightning cessation guidance

using polarimetric radar data. Wea. Forecasting, 30:308–328.

Proctor, D. E. (1971). A hyperbolic system for obtaining VHF radio pictures of

lightning. J. Geophys. Res., 76(6):1478–1489.

Rakov, V. A. (2013). The physics of lightning. Surv. Geophys., 34(6):701–729.

Rakov, V. A. (2016). Fundamentals of Lightning. Cambridge University Press.

Rakov, V. A. and Uman, M. A. (2003). Lightning: Physics and Effects. Cambridge

University Press.

Rison, W., Thomas, R. J., Krehbiel, P., Hamlin, T., and Harlin, J. (1999). A GPS-

based three-dimensional lightning mapping system: Initial observations in central

New Mexico. Geophys. Res. Lett., 26(23):3573–3576.

61



www.manaraa.com

Roeder, W. P. (2010). The four dimensional lightning surveillance system. In Third

Int. Lightning Meteorology Conf., Orlando, FL. Vaisala.

Roeder, W. P., McNamara, M., McAleenan, M., Winters, K. A., Maier, L. M., and

Huddleston, L. L. (2017). The 2014 upgrade to the lightning warning areas used by

the 45th Weather Squadron. In 18th Conference on Aviation, Range, and Aerospace

Meteorology, Seattle, WA. Amer. Meteor. Soc.

Ryzhkov, A., Schuur, T., Burgess, D., Heinselman, P., Griangrade, S., and Zrnic,

D. (2005). The Joint Polarization Experiment: Polarimetric rainfall measurements

and hydrometeor classification. Bull. Amer. Meteor. Soc., 86(6):809–824.

Saunders, C. (2008). Charge separation mechanisms in clouds. In Planetary Atmo-

spheric Electricity, pages 335–353. Springer, New York, NY.

Schuur, T., Ryzhkov, A., and Heinselman, P. (2003). Observations and classification

of echoes with the polarimetric WSR-88D radar. Technical report, NOAA/National

Severe Storms Laboratory, Norman, OK.

Stano, G. T., Fuelberg, H. E., and Roeder, W. P. (2010). Developing empirical

lightning cessation forecast guidance for the Cape Canaveral Air Force Station and

Kennedy Space Center. J. Geophys. Res, 115.

Takahashi, T. (1978). Riming electrification as a charge generation mechanism in

thunderstorms. J. Atmos. Sci., 35.

The Mathworks Inc. (2018). Piecewise Cubic Hermite Interpolating Polynomial

(PCHIP).

Thomas, R. J., Krehbiel, P. R., Rison, W., Hunyady, S. J., Winn, W. P., Hamlin, T.,

and Harlin, J. (2004). Accuracy of the lightning mapping array. J. Geophys. Res.,

109(D14207).

62



www.manaraa.com

United States Census Bureau (2010). Resident Population Data: Population Density.

Wilks, D. S. (2011). Frequentist statistical inference. Academic Press, 3rd edition.

Williams, E. R. (1985). Large-scale charge separation in thunderclouds. J. Geophys.

Res, 90(D4):60136025.

Williams, E. R. (1989). The tripole structure of thunderstorms. J. Geophys. Res.,

94:13151–13167.

Wolf, P. (2007). Anticipating the initiation, cessation, and frequency of cloud-to-

ground lightning, utilizing WSR-88D reflectivity data. NWA Electron. J. Oper.

Meteor.

Zhang, R., Williams, E. R., and Rydock, J. (1991). Mixed-phase microphysics and

cloud electrification. J. Atmos. Sci., 48(19).

63



www.manaraa.com

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

02–26–2018 Master’s Thesis Oct 2016 — Mar 2018

FORECASTING LIGHTNING CESSATION
USING DUAL-POLARIZATION RADAR

AND LIGHTNING MAPPING ARRAY NEAR WASHINGTON, D.C.

Holden, Nancy Marie, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENP-MS-18-M-085

45th Weather Squadron
1201 Edward H. White Ste. C-129
Patrick AFB, FL 32925
COMM 321-853-8410
Email: William.Roeder@us.af.mil

45 WS

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This study verifies the probabilistic lightning cessation model developed by Joseph Patton at Florida State University for
use by the U.S. Air Forces 45th Weather Squadron at Cape Canaveral Air Force Station (CCAFS) and Kennedy Space
Center (KSC). The Washington D.C. greater metropolitan area, which presents a climate different to that of central
Florida, was chosen as the domain of study. Dual-polarization radar and Lightning Mapping Array data were used to
track storms. Performance statistics show that the model revealed notable skill in the Washington D.C. area, yet not to
the desired level as indicated by the models performance in central Florida.

Lightning Cessation, Lightning Mapping Array, Dual-Polarization Radar

U U U U 64

Maj Omar Nava, AFIT/ENP

(937) 255-3636, x4518; Omar.Nava@afit.edu


	Air Force Institute of Technology
	AFIT Scholar
	3-22-2018

	Forecasting Lightning Cessation Using Dual-Polarization Radar and Lightning Mapping Array near Washington, D.C.
	Nancy M. Holden
	Recommended Citation


	tmp.1540576122.pdf.iex84

